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A continuous-time path integral quantum Monte Carlo method using the directed-loop algorithm is devel-
oped to simulate the Anderson single-impurity model in the occupation number basis. Although the method
suffers from a sign problem at low temperatures, the new algorithm has many advantages over conventional
algorithms. For example, the model can be easily simulated in the Kondo limit without time discretization
errors. Furthermore, many observables including the impurity susceptibility and a variety of fermionic observ-
ables can be calculated efficiently. Finally the new approach allows us to explore a general technique, called
the multilevel algorithm, to solve the sign problem. We find that the multilevel algorithm is able to generate an
exponentially large number of configurations with an effort that grows as a polynomial in inverse temperature
such that configurations with a positive sign dominate over those with negative signs. Our algorithm can be
easily generalized to other multi-impurity problems.
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I. INTRODUCTION

Developing efficient algorithms to solve problems in sta-
tistical mechanics involving strongly correlated fermions is
an important area of research in computational physics. Such
problems are often afflicted with sign problems and are dif-
ficult to handle using Monte Carlo techniques. The conven-
tional approach is to integrate the fermions out and write the
problem in terms of a statistical mechanics of a bosonic sys-
tem where the fermionic physics is hidden in the Boltzmann
weight as a determinant of a matrixf1,2g. In some interesting
cases the determinant is positive definite which makes it pos-
sible to design Monte Carlo methods for solving the prob-
lem. This approach is often referred to as the determinantal
Monte Carlo method. Unfortunately, the method fails in
many cases since the fermion determinant can often be nega-
tive. Even when the determinant is guaranteed to be positive
the algorithms can be inefficient in certain interesting range
of parameters. Determinantal Monte Carlo methods can of-
ten be formulated only when the partition function is written
as a path integral in discrete Euclidean time, which leads to
time-discretization errors. Although such errors are control-
lable through extrapolation techniques they can be time con-
suming. All these difficulties make it important to explore
alternative algorithms.

Recently, another approach to fermionic physics in which
fermionic partition functions are written in the occupation
number basis has gained popularityf3,4g. Although in this
approach one encounters sign problems it is sometimes pos-
sible to design efficient algorithms in regions of parameter
space where the sign problems are mild. In certain cases this
approach also leads to solutions to the sign problemsf5g,
which in turn lead to algorithms which are much more effi-
cient than conventional ones. This has lead recently, for in-
stance, to the first successful confirmation of the Kosterlitz-
Thouless behavior in a fermionic modelf6g. In this article,
we explore a new algorithm to study the physics of electrons
in a partially filled band interacting with a few impurities.

Quantum impurity models are, of course, classics of con-
densed matter many-body physicsf7g. Interest in them has

been reawakened in recent years because of developments
from two completely different points of view. On the one
hand, quantum dots in semiconductor heterostructures allow
for the creation of tunable quantum impurities which can be
studied individually and with exquisite precisionf8g. Our
particular interest is in studying the effects of mesoscopic
fluctuations on the many-body physicsf9g. On the other
hand, the study of strongly correlated electron systems away
from half filling—systems which continue to be investigated
intensively—leads naturally to fermionic quantum impurity
models through the dynamical mean theory approximation
f10g. We plan to use our method in this connection in the
future. Since the Anderson single impurity model is the sim-
plest in this classf11,12g, we focus on it; it is straight for-
ward to extend the method to include more impurities.

The Hamiltonian of the Anderson impurity model which
we consider is

H = o
k,s

ekcks
† cks + o

s

edds
†ds + o

k,s
Vkscks

† ds + ds
†cksd

+ Ud↑
†d↑d↓

†d↓, s1d

where the first term represents the free band electron energy
levels, the second term is the impurity energy, the third rep-
resents the hopping amplitudes between free electron states
and the impurity, and the last term is the repulsive Coulomb
interaction term at the impurity site. We assume that −D
øek øD where 2D is the bandwidth. This model was intro-
duced over forty years ago by Andersonf11g to study the
affects of impurity spins embedded in metals. Today, this
model plays a very important role in understanding a variety
of condensed matter systemsf12g. The problem can be
solved analytically for the case of a constant hopping ampli-
tude and a constant density of energy levels with an infinite
bandwidth, using the Bethe ansatzf13,14g. In the limit of
large U one can relate this model to the famous Kondo
model f12g. After his discovery of renormalization, Wilson
used this model to illustrate the numerical renormalization
group programf15g, which is a powerful method to solve
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this problem. It is now well understood that the low tempera-
ture properties of this model require a nonperturbative ap-
proach.

More than a decade ago Hirsch and Fye developed a de-
terminantal Monte Carlo algorithm to study this modelf2g.
Such an approach is necessary to solve the Hamiltonian in
Eq. s1d with general parameters. In this method the partition
function for a given temperature is rewritten as a statistical
mechanics of a model on a discrete temporal lattice. An aux-
iliary Ising variable for the impurity is introduced as a func-
tion of time in order to convert the Hamiltonian into a prob-
lem in which fermions are free but interact with the Ising
spin. It is then possible to integrate the fermions completely
to write the problem as a statistical mechanics of the Ising
spin. The Boltzmann weight can be written in terms of cer-
tain Green functions which can be computed easily. Unfor-
tunately, the algorithm slows down as the temporal lattice
spacing is taken to zero for a fixed temperature. It is also
difficult to approach the largeU limit since the discretization
error becomes significant. Finally, some observables are dif-
ficult to evaluate. One famous example is the impurity sus-
ceptibility which is known to contain large fluctuationsf21g.

Here we explore an alternate approach, by writing the
partition function in the occupation number basis in continu-
ous Euclidean time. Since fermionic occupations consist of
two states one can use the recently developed directed-loop
algorithm for quantum spin systemsf16g in continuous time
f17g. Unlike the Hirsch and Fye algorithm, in our method
one can only deal with a finite number of energy levels, but
the discretization error in the Euclidean time direction can be
eliminated. This allows us to simulate a large value ofU with
little effort. In the occupation number basis we can also eas-
ily calculate observables such as the average occupation
numbers, and the local susceptibility. Moreover, as we will
discuss we are able to calculate the impurity susceptibilities
efficiently.

Inspite of these advantages, the Boltzmann weights of our
configurations can be negative due to the fermion permuta-
tion sign. Thus, our method suffers from a sign problem.
However, we find that the sign problem is rather mild down
to the Kondo temperature. Interestingly, our approach also
allows us to explore a new technique, called the multilevel
algorithm, to solve the sign problem. This technique was
recently used in lattice QCD in determining the string ten-
sion between quarks and antiquarksf19g. A similar technique
was also explored inf20g. Since the multilevel technique is a
general method, our method allows us to study the useful-
ness of this approach to solve a class of fermion sign prob-
lems. Here we show that the multilevel technique is indeed
useful in alleviating the sign problem. We were able to esti-
mate signs of the order of 10−8 using this approach.

The paper is organized as follows: In Sec. II we introduce
the Monte Carlo algorithm for updating the Anderson impu-
rity model in the occupation number basis. In Sec. III we
explain the multilevel algorithm and show how one can use
it to calculate the average signs efficiently. In Sec. IV we
discuss how one can measure observables in our method. We
discuss the calculation of the impurity susceptibility and how
our method allows us to compute it efficiently. Section V
contains some results from the algorithm and Sec. VI con-
tains our conclusions.

II. DIRECTED LOOP ALGORITHM

In this section we construct a Monte Carlo method to
calculate quantities for the Anderson impurity model de-
scribed by the Hamiltonian of Eq.s1d. We begin by rewriting
the partition function,Z=Tr e−bH at temperatureT=1/b, as a
path integral in Euclidean time. This is accomplished by in-
troducingMs;b /td imaginary time slices and writing

Z = Tr e−bH < o
C

p
i=0

M−1

kCiue−tHuCi+1l, s2d

whereCi represent the electron states on theith time slice in
the occupation number basis. Since we are evaluating the
trace we must haveC0=CM. The true partition function in
continuous time is obtained in the limit of largeM and small
t at fixedb. We can define

WfCgsfCg ; p
i=0

M−1

kCiue−tHuCi+1l, s3d

whereWsCd is the magnitude andsfCg the sign of the Bolt-
zmann weight. Then the partition function can be written as

Z = o
C

WfCgsfCg. s4d

In the Monte Carlo method each space-time configurationC
is generated stochastically with probability

PsCd =
WfCg

o
C

WfCg
. s5d

Ignoring the sign, each configuration of fermion occupation
numbers is analogous to that of a configuration of a quantum
spin-half particles. Hence we can use an extension of the
directed loop algorithm discussed inf16g to update the
space-time occupation number configurationsC directly in
continuous time. A simple way to construct such an update is
to construct the update rules for finiteM and then take the
limit of infinite M. Below we describe our rules.

A special feature of the Anderson model is that electron
hopping must include the impurity and any of the band elec-
tron sites. However, since all the band electron sites are in-
volved, in our algorithm a “vertex,” in the language off16g,
is a change in the configuration between two adjacent time
slices,Ci andCi+1. If Ci =Ci+1 then one has a diagonal con-
figuration with weight

kCiue−tHuCi+1l = 1 −to
k,s

eknks − to
s

sednds + Und↑nd↓d,

up to first order int. Since we will take the continuum time
limit this is sufficient. If Ci ÞCi+1 then the two configura-
tions can only differ in the occupation numbers of either the
spin-up or the spin-down impurity fermion and the corre-
sponding spin of one of the band fermion levels with mo-
mentum sayk. Furthermore, both spins cannot hop simulta-
neously! Thus, if these constraints are met then
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kCiue−tHuCi+1l = tuVku, s6d

otherwise the matrix element is zero and is disallowed. Our
directed loop update begins by choosing a point, with 50%
probability on the impurity and 50% probability on the other
sites chosen randomly on one of the spin layers. Then with
probability half the path enters the vertex either in the posi-
tive time direction or the negative time direction. Using a set
of rules that governs the exit of the update path at each
“vertex” given the entrance of the path, the loop grows until
it finds the starting point, where the update ends. The occu-
pation numbers are changed while the loop is being con-
structed.

Since the Hamiltonian commutes with the total spin op-
erator and the total fermion number operator, the rules that
generate the loop must satisfy the appropriate conservation
laws. In addition, since we will ultimately take thet→0
limit, processes of ordert2 should not be considered. Thus,
only one hopping can occur at a vertex. Using these con-
straints one can determine all the allowed processes in a
given vertex. This is illustrated in Fig. 1 in which the di-
rected loop enters the vertex through a filled electron state in

the band with a definite spin. On the right, four occupation
number conserving exit pathsfsad,sbd,scd,sddg are shown. It is
easy to see that, up to ordert, only sad and sbd are allowed.
Once all the possible paths are determined, all the processes
are given probability weights such that they satisfy detailed
balance. For example, in this case the bounce weightsad can
be chosen to be zero, so that the continuation processsbd
occurs with probability one. For vertices where the path en-
ters an occupied site, all possible loop segment assignments
are shown in Fig. 2. The example considered in Fig. 1 is
shown as vertex E in Fig. 2. Let us now discuss the other
vertices.

First, consider a vertex where a hopping occurs at sitek
and the loop enters the vertex at sitek svertex A in Fig. 2d.
There are a total ofN+1 different possible exits in this ver-
tex whereN is the total number of band energy levels. Let
Akq be the weight for the path to exit at another band electron
level q. We choose

Akq = t
minfuVku,uVqug

N + 1
. s7d

The probability for this process will then be given byPkq
=Akq/ stuVkud. Since Akq is symmetric ink and q detailed
balance is satisfied. The remaining probability must be the
probability for the loop to exit at the impurity. Since there are
two possible paths, for simplicity the weight for each of
these processes is chosen to be

Akd =
1

2StuVku − o
qÞk

AqkD . s8d

Then, the probability for these process isAkd/tuVku. The fac-
tor N+1 guarantees that all ofAqk, Adk are positive numbers.
Our choice of weights is such that in the case where alluVku
are the same all possible processes are equally likely. Note
that the loop does not bounce back at this vertex, and there is
a unique direction for the loop at each of the band levels.

In the case of vertex B the incoming path is on the impu-
rity. The outgoing path can be at one of the electron band
levels with momentumk which has the weightAdk which
will be chosen to be equal toAkd to satisfy detailed balance.
In this case there is a possibility for the loop to continue
forward or to bounce back. In order to fix the weights of
these processes one compares the weight of the original ver-
tex with that of the vertex obtained if the loop continues to
go forward. If the forward continuation produces a vertex of
the smaller weight, the bounce weight is chosen to be the
absolute value of difference of the two weights; otherwise
the bounce weight is zero. There are two cases to be consid-
ered: for the case in which the impurity site contains an
electron with the opposite spinsto the spin at which the path
is being constructedd, the bounce weight isutsed+Udu, and in
the other caseutseddu. This prescription along with the nor-
malization condition fixes the weight of the continuation pro-
cess.

In vertices C, D, and G every weight for the exit path
hopping to or out of the impurity is chosen asutVk/2u so that

FIG. 1. When the directed loop enters a vertexsshown on the
leftd one can produce many exit pathsssome of them are shown on
the right after the flip in the occupation numbersd. Circles indicate
electron levels in the band and squares represent the impuritysfilled
symbols indicate occupied sitesd. Each figure only shows a few
relevant electron sites. For the Anderson model discussedscd and
sdd are forbidden to ordert. Both sad andsbd are allowed but we can
choose the weight ofsad to be zero while satisfying detailed
balance.

FIG. 2. Assignments of directed-loop segments. All possible
vertices in which the entrance site is occupied are shown. Vertex E
was considered in Fig. 1. However, unlike Fig. 1 all the exit paths
are shown together without the flip in occupation numbers.
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the forward and backward probabilities in G are equal. Con-
tinuation and bounce weights in vertices C and D are deter-
mined in the same way as for vertex B; the bounce weight
turns out to beuteku if forward continuation lowers the
weights, otherwise zero. In G, there is no bounce back. In
vertex F a hopping from sitek to siteq occurs with weight
tminfuVku , uVqug / s2d. Finally, as discussed earlier, in vertex E
the path is always forced to continue.

The above rules can easily be extended to the case in
which the directed loop enters a vertex on an empty site.
Although the above rules satisfy detailed balance, they are in
no way unique. We chose the above rules after testing a few
other possibilities since they were similar in efficiency if not
better than other ones. It has been suggested that if the
bounce probability is large then the algorithm is likely to
become inefficient, since the proposed change is being re-
jected. In our case a large bounce weight in electron sites far
away from the Fermi surface is natural since the electron
sites there either remain occupied or empty most of the time.
On the other hand, a largeed or U leads to a large bounce
probability in the vertex B at the impurity. Thus, a largeed or
U may cause inefficiencies in our algorithm. One can choose
a different set of weights to reduce the bounce weights by
taking into accountek at all values ofk, but determining the
weights in this case becomes difficult. We have tested a few
different set of weights which gives less bounce back at the
impurity and band electrons. Unfortunately, our attempts
have not improved the efficiency of the algorithm further. So
here we report on the results using simplest algorithm dis-
cussed above.

Until now the limit of t→0 was not taken. Ast is taken
to the zero, one gets the continuous time version. FromAqk,
Adk, and the bounce weights, one can easily evaluate the
decay rates for the continuous time simulation. The Monte
Carlo simulation in continuous time proceeds as follows:
First, we pick a starting time, spin, and path direction. For
the starting site, the impurity site is picked more often. Typi-
cally 50% of the starting points are at the impurity and the
remaining 50% on the levels in the band with equal probabil-
ity f18g. The path for the loop continues in time until a decay
occurs into one of the possible vertices. Then, the new level
and the direction are determined by the exit process. If a path
hits a time slice where the configuration changes before a
decay occurs, then the vertex at that time slice is used to
decide the exit process. The loop update continues until it
closes. As the loop is constructed the occupation states along
the loop are flipped.

III. MULTILEVEL ALGORITHM

In a given configurationC electrons hop between the band
and the impurity site so that in a periodic configuration in
imaginary time, the electrons permute their positions. Due to
the Pauli principle, this causes configurations to have a posi-
tive or a negative sign. This is the reason for the factorsfCg
in Eq. s3d. Any physical quantityO can be computed using

kOl =
1

Z
Tr Oe−bH =

oC
OsfCgWsCd

oC
sfCgWsCd

=
kOsl
ksl

, s9d

where the final expectation values are computed using the
Monte Carlo algorithm discussed in the previous section that
generates configurations with probabilityPsCd defined in Eq.
s5d. Unfortunately, as the temperature decreases, both the
numerator and the denominator decrease exponentially
which makes the calculations of fermionic observables at
low temperatures extremely difficult. Thus one needs an ef-
ficient method to compute exponentially small numbers by
averaging large positive and negative numbers, a problem
that is generically referred to as theSign Problem.

Recently, a clever trick referred to as the multi-level al-
gorithm was discovered in the context of lattice QCD to
compute exponentially small numbersf19g. In particular it
was possible to compute the potentialVsRd between quarks
and anti-quarks, by computing the corresponding exponen-
tially small Boltzmann weight expf−VsRd /Tg at a tempera-
ture T. In lattice QCD this quantity can be computed by
averaging the Wilson loop which is typically of order 1 for a
given configuration. It was shown that the multilevel algo-
rithm could compute averages of Wilson loops that were as
small as 10−20. The basic idea was to write the observable, in
this case the Wilson loop, as a product of many terms such
that each of the terms is not very small even though the
product is very small. In this article we show that a similar
approach can be applied to compute the average sign in the
fermionic problem using the directed-loop algorithm.

In order to apply the multilevel algorithm let us divide the
Euclidean timeb of the lattice into 2K−1 parts with the same
time thickness. Let us denote the sublattice configuration of
fermions inside each of these parts byCsi

, i =1,2, . . . ,2K−1

and the boundaries between the sublattices byCbt
wheret

=0,« ,2« , . . . ,b represents the Euclidean times at the bound-
aries. Periodic boundary conditions in time means thatCb0
=Cbb

. Now, the boundary configurationsCb and sublattice
configurationsCs determine the entire configurationC. The
probability PsCd can then be expressed as

PsCd = PsCbd p
i=1

2N−1

PsCb,Csi
d, s10d

where PsCbd is the probability of finding the configuration
Cb on the boundaries andPsCb,Csi

d is the conditional prob-
ability of finding the configurationCsi

given the boundary
configurationsCb. Clearly, PsCb,Csi

d depends only on the
boundaries that bound theith sublattice. Since the sign of a
configurationsfCg can be written as a product of sign factors
coming from each of the sublattices, the average sign can be
written as

ksl = o
Cb,Csi

PsCbdp
i

siPsCb,Csid, s11d

wheresi is the sign that comes from the sublatticei. Now
oCsi

siPsCb,Csid is just the average sign of theith sublattice
with a fixed boundary configuration. So
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ksl = o
Cb

PsCbdp
i

ksilsCbd, s12d

whereksilsCbd is the average sign of the sublatticei with the
boundaryCb.

The multilevel algorithm proceeds as follows: First, to
generate a sequence of boundariesCb, one updates the entire
lattice. Then, with a fixed boundary configurationCb, one
generates a subsequence ofNs configurations for each sub-
lattice. The directed loop algorithm is well suited for this
update; when the directed-loop encounters the fixed time
slice the path is forced to bounce back! Clearly one can
estimate the average signksil of each sublattice indepen-
dently using theNs configurations and then use their product
to computeksl. It should be emphasized that although the
sublattice averages are not exact there is no systemic errors
in this approach.Ns is determined empirically so as to make
the calculation efficient. The subaverages do not have to be
calculated more accurately than the size of the fluctuations
due to change in the boundaries. Once the sublattices are
updated the entire configuration is again updated to generate
a new set of boundary configurationsCb. Repeating this pro-
cess, a series of sign measurements are generated. The final
result of the sign is obtained by averaging these measure-
ments. The statistical noise in the sign is reduced because

effectively one is summing overNs
2K−1

configurations for
each of these measurements.

By performing a nested set of the above multilevel algo-
rithm we can further reduce the statistical noise in measuring
the average sign. Let us now discuss this nested algorithm. In
this discussion we will refer to the time-slicest
=0,2p−1« ,2s2p−1«d ,3s2p−1«d. . . as level-p time slices. Note
that there are 2K−p sublattices between the level-p time slices.
We will refer to these as level-p sublattices. A level-p update
will mean performing a single directed-loop update on each
of the 2K−p level-p sublattices keeping the level-p time slices
fixed. With these definitions it is clear that the algorithm
discussed in the previous paragraph involvesNs level-1 up-
dates. On the other hand the nested algorithm proceeds as
follows. We first performNs level-1 updates as before while
accumulating sign factorssi, i =1,2, . . . ,2K−1, associated
with configurations on each of the level-1 sublattices. Let us
denote them assi

s1d for the current discussion and refer to
them as level-1 sign factors. After accumulatingNs values of
these signs insi

s1d we compute level-2 sign factors defined by
si

s2d=s2i−1
s1d s2i

s1d /Ns
2, i =1,2, . . . ,2K−2, which is just the product

of averages of level-1 signs. We now perform a level-2 up-
date in order to change the level-1 time slices while keeping
the level-2 time slices fixed. With the new level-1 time slices
we repeat theNs level-1 updates and accumulate a new set of
level-1 signs. At this stage we compute the new level-2 signs
and accumulate it insi

s2d. Repeating this processNs times we
accumulateNs level-2 signs which we then use to compute
level-3 signs defined assi

s3d=s2i−1
s2d s2i

s2d /Ns
2, i =1,2, . . . ,2K−3.

Thus, we continue to build sign factors at each higher level
by multiplying averages overNs lower level signs, until one
has averaged overNs sign factors at levelK. This then gives
the stochastic estimate for the final average sign at the end of

the update. A schematic code of our nested algorithm is
given below.

FOR i =1, . . . ,sNsdK−1.
PerformNs level-1 updates and accumulate level-1
signssi

s1d, i =1,2, . . . ,2K−1 on each of 2K−1 level-1
sublattices.

FOR j =2, . . . ,K.

Compute and accumulate level-j signs
si

s jd=s2i−1
s j−1ds2i

s j−1d /Ns
2, i =1,2, . . . ,2K−j.

Setsi
s j−1d=0, i =1,2, . . . ,2K−j+1.

IF i is not a multiple ofsNsd j−1,

THEN

Perform a level-j update.

BREAK

END IF

END FOR

END FOR

The total number of directed-loop updates in a single
level-j update is 2K−j. At the end of the complete nested
algorithm, the total number of level-j updates performed is
Ns

K+1−j. Thus, the total number of directed-loop updates in
the complete nested multilevel algorithm is given by

o
j=1

K

Ns
K+1−j2K−j . s13d

Assuming 2Ns@1 this number is approximatelysNsdK2K−1;
which is nothing but the total number of level-1 updates. The
number of loop updates at the higher levels is negligible.
Since b=2K−1«, assuming that the effort for a single loop
update remains the same for a fixed«, the effort to compute
the sign for a fullK-level nested multilevel algorithm grows
as a power ofb. Clearly as more levels are introduced, it
takes longer for the measurement of sign. In Fig. 3 we show
a schematic description of the multilevel idea.

One can apply the multilevel technique to observables
other than the sign which can be written as product of quan-
tities on each of the sublattices. We call such observables as
being compatible with the multilevel algorithm. The opti-
mum number of levels should be determined empirically.
This number can depend on the observable to be calculated.
We also found that the full multilevel algorithm is the most
efficient for fermion sign problems due to the large oscilla-
tions.

IV. OBSERVABLES

Since the Monte Carlo update is performed in the occu-
pation number basis, all diagonal observablesOfng that are
functions of the occupation numbers can easily be calculated
using the formula

kOl =
kOfngsfCgl

ksfCgl
. s14d

Average occupation number of a level is one of the observ-
ables which belongs to this class. Another important diagonal
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observable in the Anderson impurity model is the local sus-
ceptibility

xlo =E
0

b

ksstdss0dl, s15d

which can be obtained from configurations of the impurity as
a function of imaginary time. This method of computation
can only be reliable for regions of temperature where the
sign problem is mild or when the multilevel algorithm dis-
cussed above is applicable and useful. Both, the average oc-
cupation numbers and the local susceptibility, are compatible
with the multilevel algorithm and hence the algorithm can be
used to alleviate the sign problem in calculating these quan-
tities.

The quantity more directly relevant to experiment is the
impurity susceptibility,xim, which is the total susceptibility
minus the free susceptibility:

xim = xtot − o
i

xi ,

wherexi is the susceptibility from theith free electron site.
In the determinantal Monte Carlosthe Hirsch and Fye algo-
rithmd the impurity susceptibility is very difficult to calculate
due to statistical noises in the simulationf21g. The problem
is that one has to calculate the total susceptibility for the
Anderson Hamiltonian and then subtract the susceptibility
for the free case from it. The total susceptibility is a quantity
of order N sthe number of band electron sitesd, but the im-
purity susceptibility is of order 1. So one has to calculate the
total susceptibility with the error of order 1 or less, which is
extremely difficult for large latticeN. From the Clogston-
Anderson compensation theoremf11g, for a large bandwidth
with a flat energy density and equal hopping amplitudes, one

can expect that the local susceptibility is equal to the impu-
rity susceptibility but in the study of mesoscopic fluctuations
the two susceptibilities can be quite differentf22g. One of the
main advantages of our method is that with our algorithm the
impurity susceptibility can be measured with significantly
reduced statistical noise. Let us now discuss how we can
computexim.

For configurations in the occupation number basis gener-
ated during the update, the hopping of electrons occurs at
only a small number of electron sites. The rest of the energy
sites appear to be free; an advantage of working in the “mo-
mentum” space lattice. Suppose thatNhop sites are involved
in the hopping for a given configurationC. Denote the con-
figuration of those sites byChop, and the free part byCf.
Then, one can express the probability ofC as PsCd
=PsChopdPsChop,Cfd, wherePsChop,Cfd is the probability of
Cf with a givenChop. The impurity susceptibility can be ex-
pressed withPsCfd andPsChop,Cfd as

xim =
1

ksl o
Chop

PsChopdsfChopgHxsChopd + o
Cf

PsChop,Cfd

3FxsCfd − o
iPCf

xi − o
iPChop

xiGJ ,

wherexsChopd, xsCfd are the susceptibilities from sites that
contain electron hops and those that appear free in a given
configuration. SinceCf contains no hop, one can see that

o
Cf

PsChop,CfdSxsCfd − o
iPCf

xiD = 0.

Using this one can find that the impurity susceptibility is
given by

FIG. 3. A schematic descrip-
tion of the four level algorithm.
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xim =
1

kslKsfChopgSxsChopd − o
iPChop

xiDL , s16d

where the free susceptibility of the sites inChop only needs to
be subtracted. In this method the size of statistical fluctuation
of the measurements of the impurity susceptibility is of order
of the number of electron sites in which the hopping occurs
for a configuration. So the statistical noise in this method are
substantially reduced. The observables that go into Eq.s16d
are again compatible with the multilevel algorithm.

Unfortunately, we have found that the above technique is
still noisy in practice. Interestingly, one can reduce the sta-
tistical noise inxsChopd further by using the technique of
improved estimator that is commonly used in cluster algo-
rithms. In this method one identifies all spin clusters for a
given configurationChop that can be flipped independently
and performs a partial average over these cluster flips. Un-
fortunately, this step is not compatible with the multilevel
algorithm. But for the case where the sign problem is mod-
erate the impurity susceptibility can be computed very effi-
ciently using our algorithm.

V. RESULTS

In this section we discuss results from the simulation of
the Anderson Hamiltonian given in Eq.s1d with the algo-
rithm described in the previous sections. First, let us focus on
the calculation of the average sign using the multilevel algo-
rithm. For this purpose we chooseN=750 equally spaced
energy levels with a bandwidth of 2D=10. We chooseVk
=V such thatG=prV2=0.5 andU=2. We have studied three
different temperatures by choosingb to be 40, 80, and 160 in
order to see the effectiveness of the multilevel algorithm in
the computation of the average sign. The sublattice thickness
« is chosen to be 10 so that atb=40 we have four, atb
=80 we have eight and atb=160 contains sixteen sublat-
tices.

For the sublattice of thickness«=10, we found thatNs
=10 updates was necessary to get an reasonable estimate of
the average sign of the sublattice. To complete one full cycle
of the all multilevel updates,s2NsdK /2 loop updates are re-
quired whereK=3 for b=40, K=4 at b=80 andK=5 at b
=160. In addition, at each higher level sublattices were up-
dated 4 times to generate new boundaries between sublat-
tices.

At b=40 and 80, we computedksl to be 4.99s11d
310−2 and 4.13s16d310−4, respectively, where the errors
are of the order of a few percent. Atb=160 the sign average
is so small and the projected time is so long that the simula-
tion was stopped when the error was about 30%. The average
sign atb=160 was 4.7s1.2d310−8. The computational time
taken for these results are 3, 92, and 2000 h, respectively.
For the b=160, 6 CPUs were used with different random
number seeds to collect the data. In Fig. 4 we plot the aver-
age sign as a function ofb and we see that all the values fall
nicely on an exponential form as expected.

Now the biggest question to answer is whether the multi-
level algorithm is useful. We would first like to point out that
it is still difficult to compute the average sign with reason-

able errors at very small temperatures. The required effort
grows as at least a large power ofb, and we cannot rule out
an exponential growth at the moment. However, the fact that
for b=160 we could compute numbers of the order of 10−8

itself is an indication that some progress has been achieved.
Without the multilevel algorithm this would have been im-
possible. If we look at the individual values of the sign com-
puted by the multilevel algorithm after each update we learn
something further. Figure 5 shows these values of the signs
for different values ofb. We see that using the multilevel
algorithm the values of the signs are dominated by positive
values. For example one can see that atb=160 the average
sign has most contributions from the positive side. We show
this in Fig. 6 by focusing on the first 2000 positive and
negative values. We see that although the very small values
come with equal weight between positive and negative val-
ues, there are a few positive numbers that dominate over the
negative numbers. The multilevel algorithm has allowed us

FIG. 4. Average signs vsb for N=750,D=5, U=2, ed=−1, and
G=0.5.

FIG. 5. Monte Carlo sequence of fermion signs forb=40, 80,
and 160 from the top.
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to find configurations whose signs, when summed up, leads
to a very small number which can either be positive or nega-
tive but occasionally it also leads to numbers which are or-
ders of magnitude larger but mostly positive. The large error
in the average sign is mainly due to these large fluctuations
but always in the positive direction. In the next section we
will discuss why this observation is interesting.

In order to show that the new algorithm is indeed inter-
esting, for the parameters chosen above we compute the av-
erage occupation numbers for the various energy levels. In
Fig. 7 we plot the differences between the average occupa-
tion numbers in the interacting cases and the free cases at the
temperaturesb=25 and 50. The open circles give the results
in the cases whereU=0 in which case one can obtain the
result also from the exact Green functions assuming the den-
sity of energy levels is smoothssolid lined. Thus, we see that
our algorithm can indeed produce results in good agreement.
For the case ofU=2, the Kondo temperature for this system
is roughlyTk=0.09 as seen from the numerical renormaliza-
tion methodf2,15g. In this caseb=25 and 50 correspond to
a temperature of aboutTk/2 andTk/4. We see that indeed the
Kondo resonance appears as expected.

Finally, we focus on the local and impurity susceptibili-
ties. To check the Clogston-Anderson compensation theo-
rem, a larger bandwidth 2D=20 is chosen withN=2000. For
U=2sed=−1d, xlo andxim are shown in Fig. 8. For the local
susceptibility, with the multilevel method we were able to
calculate the local susceptibility at a much lower temperature
than the impurity susceptibility. We find thatxlo andxim are
in reasonable agreement as expected from the Clogston-

Anderson compensation theorem. We also compare our re-
sult with the NRG curvessolid lined obtained forTk=0.08
which passes through most of the data points.

Since our simulations are in continuous Euclidean time,
we can simulate a largeU without increasing the discretiza-
tion error. In the limit of largeU, the Anderson model con-
verges to the Kondo model. In the Kondo model, band elec-
trons and impurity spin interact with the couplingJ. From
the Schrieffer-Wolff transformationf23g, the effective cou-
pling J of the Anderson Hamiltonian for a largeU is
8G /pUr. In order to go towards the Kondo limit we fix
U /G=4 and study the case whereU=25sed=−12.5d. The lo-
cal and impurity susceptibilities are plotted in Fig. 8. We see
that now these two are completely different. We attribute this
difference to the fact thatU@D in which case the compen-
sation theorem is no longer valid.

We have also computed the various observables discussed
in this article for the Hamiltonian that contains mesoscopic
fluctuations. We find that typically we can use our new
method to compute quantities for temperatures as low asT
,Tk/4. Using the multilevel technique we can also go down
to temperatures of aboutT,Tk/10.

VI. CONCLUSION

In this article we have investigated a new algorithm for a
model involving a band of fermions interacting with a single
impurity in the occupation number basis in “momentum”

FIG. 6. The first 2000 of the
positive sleftd and negative signs
in logarithmic scale of theb
=160 run.

FIG. 7. Occupation numbers minus the free Fermi function at
b=25 stopd and 50sbottomd for N=750,D=5, ed=−1, andG=0.5.

FIG. 8. Local and impurity susceptibilities forU=2 stopd and
U=25 sbottomd with U /G=4 fixed.
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space. We use the efficient directed loop algorithm to update
the configurations and absorb the sign into observables. We
find that the sign problem is mild down to temperatures of
orderTk/4. Furthermore, the new approach allows us to ex-
plore a new multilevel algorithm to compute average signs
efficiently. We were able to compute signs of the order of
10−8 with moderate effort. The new approach also allows us
to calculate certain quantities like the impurity susceptibility
more efficiently than conventional Monte Carlo methods. Fi-
nally, our algorithm can easily be extended to several impu-
rities.

The average of the sign over configurations that are gen-
erated in the multilevel algorithm fluctuates between small
values which can be both positive and negative and large
values which are orders of magnitude larger but always posi-
tive. The effort for this grows ass2NsdK /2 whereb=2K−1.
Although this does not solve the sign problem completely,
since the positive numbers can still fluctuate a lot, perhaps

half of the sign problem has been solved. If this is true then
we think this is an exciting step in the solution to the full
sign problem based on the recent progress in solving certain
sign problems using the meron cluster algorithmf5g. There it
was possible to rewrite the partition function in terms of
configurations where the Boltzmann weight was either zero
or positive. Thus, all negative signs were eliminated. The
second step was algorithmic when all zero configurations
were eliminated in an accept reject step. An intriguing ques-
tion is whether something similar can be achieved in the
present case. We leave this question for future research.

ACKNOWLEDGMENTS

The authors thank U.J. Wiese and R.K. Kaul for useful
discussions. This work was supported in part by NSF Grant
No. sDMR-0103003d.

f1g R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev.
D 24, 2278s1981d.

f2g J. E. Hirsch and R. M. Fye, Phys. Rev. Lett.56, 2521s1986d.
f3g U. J. Wiese, Phys. Lett. B311, 235 s1993d.
f4g N. Kawashima, J. E. Gubernatis, and H. G. Evertz, Phys. Rev.

B 50, 136 s1994d.
f5g S. Chandrasekharan and U. J. Wiese, Phys. Rev. Lett.83, 3116

s1999d.
f6g S. Chandrasekharan and J. C. Osborn, Phys. Rev. B66,

045113s2002d.
f7g J. M. Ziman,Principles of the Theory of SolidssCambridge

University Press, Cambridge, 1972d, Chap. 10; P. Phillips,Ad-
vanced Solid State PhysicssWestview, Cambridge MA, 2003d,
Chaps. 6 and 7.

f8g L. Kouwenhoven and L. Glazman, Phys. World Vol.14, s1d 33
s2001d; M. Pustilnik, L. I. Glazman, D H. Cobden, and L. P.
Kouwenhoven, Lect. Notes Phys.3, 579 s2001d; http://
www.arxiv.org/abs/cond-mat/0010336; L. Borda, G. Zarand,
W. Hofstetter, B. I. Halperin and J. von Delft, Phys. Rev. Lett.
90, 026602s2003d.

f9g R. K. Kaul, D. Ullmo, S. Chandrasekharan, and H. U.
Baranger, e-print cond-mat/0409211.

f10g G. Kotliar and D. Vollhardt, Phys. Today57, 53 s2004d; A.

Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys.68, 13 s1996d.

f11g P. W. Anderson, Phys. Rev.124, 41 s1961d.
f12g A. C. Hewson,The Kondo Problem to Heavy FermionssCam-

bridge University Press, Cambridge, 1993d.
f13g P. B. Wiegmann, Phys. Lett.31A, 163 s1981d.
f14g N. Kawakami and A. Okiji, Phys. Lett.86A, 483 s1981d.
f15g H. R. Krishnamurthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1003s1980d.
f16g O. F. Syljuasen and A. W. Sandvik, Phys. Rev. E66, 046701

s2002d.
f17g B. B. Beard and U. J. Wiese, Phys. Rev. Lett.77, 5130s1996d.
f18g One can use other distributions, e.g., an exponentially decay-

ing function away from the Fermi level.
f19g M. Lüscher and P. Weisz, J. High Energy Phys.0109, 010

s2001d.
f20g C. H. Mak, R. Egger, and H. Weber-Gottschick Phys. Rev.

Lett. 81, 4533s1998d.
f21g R. M. Fye and J. E. Hirsch, Phys. Rev. B38, 433 s1988d.
f22g G. E. Santoro and G. F. Giuliani, Phys. Rev. B44, 2209

s1991d.
f23g J. R. Schrieffer and P. A. Wolff, Phys. Rev.149, 491 s1966d.

MULTILEVEL ALGORITHM FOR QUANTUM-IMPURITY MODELS PHYSICAL REVIEW E 71, 036708s2005d

036708-9


