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Multilevel algorithm for quantum-impurity models
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A continuous-time path integral quantum Monte Carlo method using the directed-loop algorithm is devel-
oped to simulate the Anderson single-impurity model in the occupation number basis. Although the method
suffers from a sign problem at low temperatures, the new algorithm has many advantages over conventional
algorithms. For example, the model can be easily simulated in the Kondo limit without time discretization
errors. Furthermore, many observables including the impurity susceptibility and a variety of fermionic observ-
ables can be calculated efficiently. Finally the new approach allows us to explore a general technique, called
the multilevel algorithm, to solve the sign problem. We find that the multilevel algorithm is able to generate an
exponentially large number of configurations with an effort that grows as a polynomial in inverse temperature
such that configurations with a positive sign dominate over those with negative signs. Our algorithm can be
easily generalized to other multi-impurity problems.
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I. INTRODUCTION been reawakened in recent years because of developments

Developing efficient algorithms to solve problems in sta-ffom two completely different points of view. On the one
tistical mechanics involving strongly correlated fermions ishand, quantum dots in semiconductor heterostructures allow
an important area of research in computational physics. Sudier the creation of tunable quantum impurities which can be
problems are often afflicted with sign problems and are dif-studied individually and with exquisite precisid8]. Our
ficult to handle using Monte Carlo techniques. The convenparticular interest is in studying the effects of mesoscopic
tional approach is to integrate the fermions out and write thdluctuations on the many-body physi¢8]. On the other
problem in terms of a statistical mechanics of a bosonic syshand, the study of strongly correlated electron systems away
tem where the fermionic physics is hidden in the Boltzmanrfrom half filling—systems which continue to be investigated
weight as a determinant of a matfik,2]. In some interesting intensively—leads naturally to fermionic quantum impurity
cases the determinant is positive definite which makes it pognodels through the dynamical mean theory approximation
sible to design Monte Carlo methods for solving the prob-{10]. We plan to use our method in this connection in the
lem. This approach is often referred to as the determinantdliture. Since the Anderson single impurity model is the sim-
Monte Carlo method. Unfortunately, the method fails inplest in this clas$11,12, we focus on it; it is straight for-
many cases since the fermion determinant can often be negward to extend the method to include more impurities.
tive. Even when the determinant is guaranteed to be positive The Hamiltonian of the Anderson impurity model which
the algorithms can be inefficient in certain interesting rangeve consider is
of parameters. Determinantal Monte Carlo methods can of-
ten be formulated only when the partition function is written ~ H = >, &l Ccs + 2 €dld, + 2 Vi(c),d, +dlcy,)
as a path integral in discrete Euclidean time, which leads to ko o ko
time-discretization errors. Although such errors are control- +Udd.dd,, (1)
lable through extrapolation techniques they can be time con- I
suming. All these difficulties make it important to explore where the first term represents the free band electron energy
alternative algorithms. levels, the second term is the impurity energy, the third rep-

Recently, another approach to fermionic physics in whichresents the hopping amplitudes between free electron states
fermionic partition functions are written in the occupation and the impurity, and the last term is the repulsive Coulomb
number basis has gained populariB;4]. Although in this interaction term at the impurity site. We assume that -
approach one encounters sign problems it is sometimes pos=e, <D where D is the bandwidth. This model was intro-
sible to design efficient algorithms in regions of parameterduced over forty years ago by Anderspti] to study the
space where the sign problems are mild. In certain cases thafects of impurity spins embedded in metals. Today, this
approach also leads to solutions to the sign probl€Bls model plays a very important role in understanding a variety
which in turn lead to algorithms which are much more effi-of condensed matter systenj$2]. The problem can be
cient than conventional ones. This has lead recently, for insolved analytically for the case of a constant hopping ampli-
stance, to the first successful confirmation of the Kosterlitztude and a constant density of energy levels with an infinite
Thouless behavior in a fermionic modd]. In this article, bandwidth, using the Bethe ansdti3,14. In the limit of
we explore a new algorithm to study the physics of electronsarge U one can relate this model to the famous Kondo
in a partially filled band interacting with a few impurities. model[12]. After his discovery of renormalization, Wilson

Quantum impurity models are, of course, classics of conused this model to illustrate the numerical renormalization
densed matter many-body physicd. Interest in them has group progran{15], which is a powerful method to solve
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this problem. It is now well understood that the low tempera- Il. DIRECTED LOOP ALGORITHM
ture properties of this model require a nonperturbative ap- ) .
proa(F:)h. P q P P In this section we construct a Monte Carlo method to

More than a decade ago Hirsch and Fye developed a d&@lculate quantities for the Anderson impurity model de-
terminantal Monte Carlo algorithm to study this mogig].  Scribed by the Hamiltonian of E41). We begin by rewriting
Such an approach is necessary to solve the Hamiltonian i€ partition functionZ=Tr e#" at temperatur@=1/5, as a
Eq. (1) with general parameters. In this method the partitionPath integral in Euclidean time. This is accomplished by in-
function for a given temperature is rewritten as a statisticafroducingM(=g/7) imaginary time slices and writing
mechanics of a model on a discrete temporal lattice. An aux-
iliary Ising variable for the impurity is introduced as a func- ~ B
tion of time in order to convert the Hamiltonian into a prob- Z=TreM=3 H (Cile™|Cirp), )
lem in which fermions are free but interact with the Ising c =0

spin. It is then possible to integrate the fermions completely, o o represent the electron states on itfetime slice in

to write the problem as a statistical mechanics of the Ismqhe occupation number basis. Since we are evaluating the
spin. The Boltzmann weight can be written in terms of cer- _ : . L

: : : : trace we must hav€,=Cy. The true partition function in
tain Green functions which can be computed easily. Unfor-_ ~ " o LTV MM e
tunately, the algorithm slows down as the temporal latticeSOntinuous time is obtained in the limit of lard# and small

spacing is taken to zero for a fixed temperature. It is alsd at fixed 8. We can define

M-1

difficult to approach the largg limit since the discretization M-1
error becomes significant. Finally, some observables are dif- — o~
ficult to evaluate. One famous example is the impurity sus- WClolCl g (Cle™ICiv), ®

ceptibility which is known to contain large fluctuatiofl].

Here we explore an alternate approach, by writing thewhereW(C) is the magnitude and{C] the sign of the Bolt-
partition function in the occupation number basis in continu-zmann weight. Then the partition function can be written as
ous Euclidean time. Since fermionic occupations consist of
two states one can use the recently developed directed-loop Z=> WC]o{C]. (4)
algorithm for quantum spin systerh6] in continuous time I
[17]. Unlike the Hirsch and Fye algorithm, in our method
one can only deal with a finite number of energy levels, butn the Monte Carlo method each space-time configurafion
the discretization error in the Euclidean time direction can bds generated stochastically with probability
eliminated. This allows us to simulate a large valu&Jofith
little effort. In the occupation number basis we can also eas- P(C) = WC]
ily calculate observables such as the average occupation B E\N[C]'
numbers, and the local susceptibility. Moreover, as we will C
discuss we are able to calculate the impurity susceptibilities
efficiently. Ignoring the sign, each configuration of fermion occupation

Inspite of these advantages, the Boltzmann weights of ouumbers is analogous to that of a configuration of a quantum
configurations can be negative due to the fermion permutaspin-half particles. Hence we can use an extension of the
tion sign. Thu_s, our methoq suffers fro_m a sign Pr0b|em-directed loop algorithm discussed {i6] to update the
However, we find that the sign problem is rather mild downspace-time occupation number configuratighslirectly in
to the Kondo temperature. Interestingly, our approach alsqninyous time. A simple way to construct such an update is

allows us to explore a new technique, called the multilevel, constryct the update rules for finitd and then take the
algorithm, to solve the sign problem. This technique wasjmit of infinite M. Below we describe our rules.

recently used in lattice QCD in determining the string ten- A gpecial feature of the Anderson model is that electron
sion between quarks and antiquafk8]. A similar technique hopping must include the impurity and any of the band elec-
was also explored if20]. Since the multilevel technique is @ o sites. However, since all the band electron sites are in-
general m_ethod, our method allows us to study th_e useful\-,owed, in our algorithm a “vertex,” in the language [d#],

ness of this approach to solve a class of fermion sign prob 4 change in the configuration between two adjacent time

lems. Here we show that the multilevel technique is indeeqjices C. and Ci.1. If C;=C,., then one has a diagonal con-
useful in alleviating the sign problem. We were able to es“'figuraiioln with Iweight b

mate signs of the order of 1®using this approach.

The paper is organized as follows: In Sec. Il we introduce Ja™e N=1 — _
the Monte Carlo algorithm for updating the Anderson impu- (GleTICh =1 Tgr My = 722 (6o Uiy,
rity model in the occupation number basis. In Sec. Ill we
explain the multilevel algorithm and show how one can useup to first order inr. Since we will take the continuum time
it to calculate the average signs efficiently. In Sec. IV welimit this is sufficient. If C;# C;,; then the two configura-
discuss how one can measure observables in our method. Wens can only differ in the occupation numbers of either the
discuss the calculation of the impurity susceptibility and howspin-up or the spin-down impurity fermion and the corre-
our method allows us to compute it efficiently. Section V sponding spin of one of the band fermion levels with mo-
contains some results from the algorithm and Sec. VI conmentum say. Furthermore, both spins cannot hop simulta-
tains our conclusions. neously! Thus, if these constraints are met then
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« o5 o m 3) o o = the band with a definite spin. On the right, four occupation
number conserving exit path&),(b),(c),(d)] are shown. It is
T 0o & 0 © © & O easy to see that, up to orderonly (a) and(b) are allowed.
e 0 o =m (a) (b) Once all the possible paths are determined, all the processes
o e o are given probability weights such that they satisfy detailed
T e 06 o m e 0 o m balance. For example, in this case the bounce wéghtan
be chosen to be zero, so that the continuation pro@gss
© I ¢ e o e T occurs with probability one. For vertices where the path en-
© () ters an occupied site, all possible loop segment assignments

are shown in Fig. 2. The example considered in Fig. 1 is
FIG. 1. When the directed loop enters a verekown on the shown as vertex E in Fig. 2. Let us now discuss the other
left) one can produce many exit pattsome of them are shown on vertices.
the right after the flip in the occupation number€ircles indicate First, consider a vertex where a hopping occurs atlsite
electron levels in the band and squares represent the imfilfey and the loop enters the vertex at ditévertex A in Fig. 2.
symbols indicate occupied sifestach figure only shows a few There are a total o+ 1 different possible exits in this ver-
relevant electron sites. For the Anderson model discugsednd  tex whereN is the total number of band energy levels. Let

(d) are forbidden to order. Both (a) and(b) are allowed but we can Ay be the weight for the path to exit at another band electron
choose the weight ofa) to be zero while satisfying detailed |gyg| . We choose

balance.
_ min[]V,], V]
(Cile™|Ciapy = AV, (6) a- N+1 @)

The probability for this process will then be given By,
otherwise the matrix element is zero and is disallowed. OuF A,/ (7Vy|). Since Ay, is symmetric ink and g detailed
directed loop update begins by choosing a point, with 50%balance is satisfied. The remaining probability must be the
probability on the impurity and 50% probability on the other probability for the loop to exit at the impurity. Since there are
sites chosen randomly on one of the spin layers. Then wittwo possible paths, for simplicity the weight for each of
probability half the path enters the vertex either in the posithese processes is chosen to be
tive time direction or the negative time direction. Using a set
of rules that governs the exit of the update path at each 1
“vertex” given the entrance of the path, the loop grows until A= 5(71Vk| -2 Aqk)- (8)
it finds the starting point, where the update ends. The occu- azk

ation numbers are changed while the loop is being con-
gtructed. g P g Then, the probability for these processtig/ 7V, |. The fac-

Since the Hamiltonian commutes with the total spin op-t°" N+h1 .guar?nte_eithat all ﬁqk'hAd‘S arﬁ positive rrllumberls.
erator and the total fermion number operator, the rules tha@Ur choice of weights is such that in the case whereé\g|
generate the loop must satisfy the appropriate conservatigif€ the same all possible processes are equally likely. Note
laws. In addition, since we will ultimately take the— 0 that 'Fhe Ioo_p do_es not bounce back at this vertex, and there is
limit, processes of order? should not be considered. Thus, & Unique direction for the loop at each of the band levels.
only one hopping can occur at a vertex. Using these con- In the case (_)f vertex B the incoming path is on the impu-
straints one can determine all the allowed processes in &Y- The outgoing path can be at one of the electron band
given vertex. This is illustrated in Fig. 1 in which the di- levels with momenturrk which has the weightyy, which

rected loop enters the vertex through a filled electron state ii/ill P& chosen to be equal #y to satisfy detailed balance.
In this case there is a possibility for the loop to continue

forward or to bounce back. In order to fix the weights of

1 o o 1 l . i R 1 i . i - these processes one compares the weight of the original ver-
tex with that of the vertex obtained if the loop continues to
L] [ O | Q i 1
T T ? T ﬂ ﬁ 'ﬂ f go forward. If the forward continuation produces a vertex of
¢

the smaller weight, the bounce weight is chosen to be the
absolute value of difference of the two weights; otherwise

by (© (@

1 l l 1 the bounce weight is zero. There are two cases to be consid-
© o m o o e o o ered: for the case in which the impurity site contains an
o e O o E e O electron with the opposite spiio the spin at which the path
T T T T T is being constructedthe bounce weight ig{e4+U)|, and in

U}

(e) @

the other casér(ey)|. This prescription along with the nor-
FIG. 2. Assignments of directed-loop segments. All possiblemalization condition fixes the weight of the continuation pro-

vertices in which the entrance site is occupied are shown. Vertex E€SS.

was considered in Fig. 1. However, unlike Fig. 1 all the exit paths In vertices C, D, and G every weight for the exit path

are shown together without the flip in occupation numbers. hopping to or out of the impurity is chosen ja¥,/2| so that
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the forward and backward probabilities in G are equal. Con- > 00{C]W(C)
tinuation and bounce weights in vertices C and D are deter- (0)= 1 TroefH=—S = <O‘T>, 9)
mined in the same way as for vertex B; the bounce weight z 2. o[CIW(©) (o)

turns out to be|re | if forward continuation lowers the

weights, otherwise zero. In G, there is no bounce back. Invhere the final expectation values are computed using the
vertex F a hopping from sité to site q occurs with weight ~Monte Carlo algorithm discussed in the previous section that
min[|Vy/, [Vy|1/(2). Finally, as discussed earlier, in vertex E generates configurations with probabilRyC) defined in Eq.

the path is always forced to continue. (5). Unfortunately, as the temperature decreases, both the

The above rules can easily be extended to the case iumerator and the denominator decrease exponentially
which the directed loop enters a vertex on an empty site‘.’Vh'Ch makes the calculations of fermionic observables at

Although the above rules satisfy detailed balance, they are ifpW €mperatures extremely difficult. Thus one needs an ef-

no way unique. We chose the above rules after testing a fe\f\'/dent method to compute exponentially small numbers by

other possibilities since they were similar in efficiency if not averaging large positive and negative numbers, a problem

better than other ones. It has been suggested that if thtgat Is generically rEferTed o as tikgn Problem .
Recently, a clever trick referred to as the multi-level al-

bounce probability is large then the algorithm is likely to orithm was discovered in the context of lattice QCD to

pecome inefficient, since the proposgd change IS be_mg r ompute exponentially small numbeis9]. In particular it
jected. In our case a large bounce weight in electron sites f

) . X &las possible to compute the potentiéR) between quarks
away from t_he Fermi .surface is natural since the elecjtror}md anti-quarks, by computing the corresponding exponen-
sites there either remain occupied or empty most of the t'metially small Boltzmann weight eXpV(R)/T] at a tempera-
On the other hand, a large or U leads to a large bounce e 1 |n jattice QCD this quantity can be computed by
probability in the vertex B at the impurity. Thus, a largeor  ayeraging the Wilson loop which is typically of order 1 for a
U may cause inefficiencies in our algorithm. One can choosgjyen configuration. It was shown that the multilevel algo-
a different set of weights to reduce the bounce weights b¥ithm could compute averages of Wilson loops that were as
taking into account at all values ok, but determining the  small as 10%. The basic idea was to write the observable, in
weights in this case becomes difficult. We have tested a fewhis case the Wilson loop, as a product of many terms such
different set of weights which gives less bounce back at thehat each of the terms is not very small even though the
impurity and band electrons. Unfortunately, our attemptsproduct is very small. In this article we show that a similar
have not improved the efficiency of the algorithm further. Soapproach can be applied to compute the average sign in the
here we report on the results using simplest algorithm disfermionic problem using the directed-loop algorithm.
cussed above. In order to apply the multilevel algorithm let us divide the
Until now the limit of 7— 0 was not taken. As is taken  Euclidean timeg of the lattice into £71 parts with the same
to the zero, one gets the continuous time version. FAgn time thickness. Let us denote the sublattice configuration of
Ay and the bounce weights, one can easily evaluate thErmions inside each of these parts 6y, i=1,2,..., %!
decay rates for the continuous time simulation. The Monteéand the boundaries between the sublattice<Chywhere
Carlo simulation in continuous time proceeds as follows:=0,¢,2¢, ... ,8 represents the Euclidean times at the bound-
First, we pick a starting time, spin, and path direction. Foraries. Periodic boundary conditions in time means hat
the starting site, the impurity site is picked more often. Typi-=C, . Now, the boundary configuratiors, and sublattice
cally 50% of the starting points are at the impurity and theconﬁgurationscS determine the entire configuratiah The
remaining 50% on the levels in the band with equal probabil{robability P(C) can then be expressed as
ity [18]. The path for the loop continues in time until a decay N1
occurs into one of the possible vertices. Then, the new level _
and the direction are determined by the exit process. If a path P(C)=P(Cy) Il:ll P(Cb’cﬁ)’ (10
hits a time slice where the configuration changes before a
decay occurs, then the vertex at that time slice is used t¥hereP(Cy) is the probability of finding the configuration
decide the exit process. The loop update continues until i€y on the boundaries anél(Cy, Cs) is the conditional prob-
closes. As the loop is constructed the occupation states alor@pility of finding the configuratiorCs given the boundary
the loop are flipped. configurationsCy. Clearly, P(C,,Cs) depends only on the
boundaries that bound théh sublattice. Since the sign of a
configurationo{ C] can be written as a product of sign factors

. MULTILEVEL ALGORITHM coming from each of the sublattices, the average sign can be
written as
In a given configuratioi electrons hop between the band B
and the impurity site so that in a periodic configuration in (0)= CEC P(Cb)H aiP(Cy,Csi), (11)
br~si

imaginary time, the electrons permute their positions. Due to
the Pauli principle, this causes configurations to have a posiwhere g; is the sign that comes from the sublatticeNow
tive or a negative sign. This is the reason for the faef®®]  =¢_oiP(C,,Cy) is just the average sign of thith sublattice
in Eqg. (3). Any physical quantityO can be computed using with a fixed boundary configuration. So
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(o= P(Cb)H<U'>(Cb) (12) the update. A schematic code of our nested algorithm is
c o ' given below.

FORi=1,... (NJK ™.

where(a;)(C,) is the average sign of the sublatticeith the PerformN, level-1 updates and accumulate level-1

boundaryC, : DS - a
The multilevel algorithm proceeds as follows: First, to S|gns<r_i( ,i=1,2,...,% on each of £ level-1

generate a sequence of boundafgsone updates the entire sublattices.

lattice. Then, with a fixed boundary configurati@y, one FORj=2,... K.

generates a subsequenceNafconfigurations for each sub- Compute and accumulate leviekigns

lattice. The directed loop algorithm is well suited for this gi(i):ggiill)g(zii‘l)/Ng, i=1,2,... %,

update; when the directed-loop encounters the fixed time Seto_i(j—l)zo, i=1,2 .. &

slice the path is forced to bounce back! Clearly one can

. . . : ii i -1
estimate the average sidwo;) of each sublattice indepen- IF i is not a multiple of(Ny)'™,

dently using theNg configurations and then use their product THEN
to compute(o). It should be emphasized that although the Perform a level update.
sublattice averages are not exact there is no systemic errors BREAK
in this approachNs is determined empirically so as to make END IF
the calculation efficient. The subaverages do not have to be
. . END FOR
calculated more accurately than the size of the fluctuations END FOR

due to change in the boundaries. Once the sublattices are
updated the entire configuration is again updated to generate The total number of directed-loop updates in a single
a new set of boundary configuratioBg. Repeating this pro- level§j update is 7. At the end of the complete nested
cess, a series of sign measurements are generated. The fiadgorithm, the total number of levglupdates performed is
result of the sign is obtained by averaging these measurdN '™, Thus, the total number of directed-loop updates in
ments. The statistical noise in the sign is reduced becaugbe complete nested multilevel algorithm is given by

K-1
effectively one is summing oveN§ configurations for K
each of these measurements. > NKHLigK- (13)
. i A .
By performing a nested set of the above multilevel algo- j=1

rithm we can further reduce the statistical noise in measurin

- s - - i KoK-1.
the average sign. Let us now discuss this nested algorithm. %s:;ummg N;>1 this number is approximatelfNy” 2"
this discussion we will refer to the time-slices  Whichis nothing but the total number of level-1 updates. The

=0, 21, 2(2P %), 3(2" )... as levelp time slices. Note number of loop updates at the higher levels is negligible.

; Kl ) i
that there are'2P sublattices between the levetime slices. S|r:jcet,8-2 e ?ﬁsummg ]:[hat tfhe ;Lfort ]fforti single I(t)op
We will refer to these as levgl-sublattices. A levep update update remains the same for a fixeane eriort 1o compute

will mean performing a single directed-loop update on eacﬁhe sign for a fullK-level nested multilevel algqrithm grows
of the 2P levelp sublattices keeping the levpltime slices aska pl)ower ?f'B' r(l:learly as more Iefve]s a:e Ilzntrogucedhlt
fixed. With these definitions it is clear that the algorithmta es longer for the measurement of sign. In Fig. 3 we show

discussed in the previous paragraph involdgdevel-1 up- 2 schematic description of the multileve_l idea.
b paragrap b b One can apply the multilevel technique to observables

dates. On the other hand the nested algorithm proceeds asn X . .
follows. We first performN, level-1 updates as before while Oter than the sign which can be written as product of quan-

accumulating sign factorsr, i=1,2,...,%1, associated tities on each of the sublattices. We call such observables as

with configurations on each of the level-1 sublattices. Let u&elng compatible with the multilevel algor_lthm. The_ opti-

a : . mum number of levels should be determined empirically.
denote them as;~ for the current discussion and refer to ., -

i This number can depend on the observable to be calculated.
them as level-1 sign factors. After accumulatigvalues of

) ) . ) We also found that the full multilevel algorithm is the most
these signs Il?lri(l) we compute level-2 sign factors defined by 9

a§2>:a;}llag}>/|\|§, i=1.2.....%2 which is just the product t?;flncsl(.ant for fermion sign problems due to the large oscilla
of averages of level-1 signs. We now perform a level-2 up-

date in order to change the level-1 time slices while keeping IV. OBSERVABLES

the level-2 time slices fixed. With the new level-1 time slices ) . .

we repeat thé\, level-1 updates and accumulate a new setof Since the Monte Carlo update is performed in the occu-
level-1 signs. At this stage we compute the new level-2 sign@ation number basis, all diagonal observalils] that are
and accumulate it iwi(z). Repeating this procedt times we fur)ctlons of the occupation numbers can easily be calculated
accumulateN, level-2 signs which we then use to compute USing the formula

level-3 signs defined asi(_g):q(zf)_la(;)/Nﬁ, i=1,2,...,%73 _(o[n]elC))

Thus, we continue to build sign factors at each higher level (0)= olc) (14)

by multiplying averages oveX lower level signs, until one 7

has averaged ovéd sign factors at leveK. This then gives  Average occupation number of a level is one of the observ-

the stochastic estimate for the final average sign at the end ables which belongs to this class. Another important diagonal
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observable in the Anderson impurity model is the local suscan expect that the local susceptibility is equal to the impu-
ceptibility rity susceptibility but in the study of mesoscopic fluctuations
B the two susceptibilities can be quite differ¢@g]. One of the
Xio = J (s(1s(0)), (15)  Main advantages of our method is that with our algorithm the
0 impurity susceptibility can be measured with significantly

. . ' . . . reduced statistical noise. Let us now discuss how we can
which can be obtained from configurations of the impurity as

fncton of imaa e Thi oL of / AScomputein.
a function of imaginary time. This method of computation g sntigurations in the occupation number basis gener-
can only be reliable for regions of temperature where th

Sted during the update, the hopping of elect t
sign problem is mild or when the multilevel algorithm dis- ed dunng the updats, fhe hopping o) electrors oceurs a

) . only a small number of electron sites. The rest of the energy
cusse_d above is applicable and useful. .B(.).th' the average Ojeg appear to be free; an advantage of working in the “mo-
cupation numbers and the local susceptibility, are compatibl

: i ) - entum” space lattice. Suppose ti\g,, sites are involved
with the multilevel algorithm and hence the algorithm can be, 1o hopping for a given configuraticd. Denote the con-

u_s_ed to alleviate the sign problem in calculating these quanﬁguration of those sites by, and the free part by;.
tities. . . . . Then, one can express the probability & as P(C)
. Th? quantity more dlrectly. reI(_evant to experiment is the_ P(Chop P(Chop: Cr), WhereP(Cy,qp, Cy) is the probability of
|mpur|ty susceptlblllty,xjm: _Whlch is the total susceptibility C, with a giveﬁChop The impuritg)/ susceptibility can be ex-
minus the free susceptibility: pressed WittP(C;) and P(Cop, Cy) as

Xim = Xiot~ 2 Xi L

I Xim = U E P(Chop)a[chop]{X(Chop) + E P(Chop Cf)

wherey; is the susceptibility from théth free electron site. 97 Chop Ct
In the determinantal Monte Carlghe Hirsch and Fye algo- : o '
rithm) the impurity susceptibility is very difficult to calculate X[X(Cf) 2 Xi ) X'] '
due to statistical noises in the simulatifil]. The problem
is that one has to calculate the total susceptibility for thewhere x(Cy,,), x(Cr) are the susceptibilities from sites that
Anderson Hamiltonian and then subtract the susceptibilityeontain electron hops and those that appear free in a given

for the free case from it. The total susceptibility is a quantityconfiguration_ Sincé:f contains no hop, one can see that
of orderN (the number of band electron sijebut the im-

purity susceptibility is of order 1. So one has to calculate the - N\ =
total susceptibility with the error of order 1 or less, which is z‘ P(ChopCf)(X(Cf) ig;f X') 0

extremely difficult for large latticeN. From the Clogston-

Anderson compensation theoréfd], for a large bandwidth Using this one can find that the impurity susceptibility is
with a flat energy density and equal hopping amplitudes, ongiven by

ieCs iechop
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Xim = ( ><0'[Chop]<)((chop) E XI)> (16) *

i Echop

<exp(—0.05103)

where the free susceptibility of the sitesGq,, only needs to

be subtracted. In this method the size of statistical fluctuation

of the measurements of the impurity susceptibility is of order

of the number of electron sites in which the hopping occurs

for a configuration. So the statistical noise in this method arec, 107

substantially reduced. The observables that go into(Eg). ¢

are again compatible with the multilevel algorithm.
Unfortunately, we have found that the above technique is

still noisy in practice. Interestingly, one can reduce the sta- 10°}

tistical noise inx(Cyop further by using the technique of

improved estimator that is commonly used in cluster algo-

rithms. In this method one identifies all spin clusters for a

given configurationCy,, that can be flipped independently 19~ 20 30 120 160

and performs a partial average over these cluster flips. Un: B

fortunately, this step is not compatible with the multilevel

algorithm. But for the case where the sign problem is mod- FIG. 4. Average signs vg for N=750,D=5,U=2, ¢;=-1, and

erate the impurity susceptibility can be computed very effi-l =0-5-

ciently using our algorithm.

)

10

200

able errors at very small temperatures. The required effort
V. RESULTS grows as at least a large power@fand we cannot rule out
an exponential growth at the moment. However, the fact that
In this section we discuss results from the simulation offor 3=160 we could compute numbers of the order 0f10
the Anderson Hamiltonian given in Eql) with the algo- itself is an indication that some progress has been achieved.
rithm described in the previous sections. First, let us focus ofithout the multilevel algorithm this would have been im-
the calculation of the average sign using the multilevel algopossible. If we look at the individual values of the sign com-
rithm. For this purpose we choos$é=750 equally spaced puted by the multilevel algorithm after each update we learn
energy levels with a bandwidth off2=10. We choose/y  something further. Figure 5 shows these values of the signs
=V such thal’=mpV?=0.5 andU=2. We have studied three for different values of8. We see that using the multilevel
different temperatures by choosiggo be 40, 80, and 160 in algorithm the values of the signs are dominated by positive
order to see the effectiveness of the multilevel algorithm invalues. For example one can see thaBatl60 the average
the computation of the average sign. The sublattice thicknessign has most contributions from the positive side. We show
& is chosen to be 10 so that @&=40 we have four, aB this in Fig. 6 by focusing on the first 2000 positive and
=80 we have eight and g8=160 contains sixteen sublat- negative values. We see that although the very small values
tices. come with equal weight between positive and negative val-
For the sublattice of thickness=10, we found thalNs  ues, there are a few positive numbers that dominate over the

=10 updates was necessary to get an reasonable estimatenglgative numbers. The multilevel algorithm has allowed us
the average sign of the sublattice. To complete one full cycle

of the all multilevel updates(2Ny)¥/2 loop updates are re- 1.0
quired whereK=3 for 8=40,K=4 at =80 andK=5 at 3

=160. In addition, at each higher level sublattices were up- 55;’ 0-5
dated 4 times to generate new boundaries between subla 0.0 ‘V IUM WMMM

tices.

At B=40 and 80, we computedo) to be 4.9911) 1 0 1000
X 1072 and 4.1816) X 1074, respectively, where the errors 010
are of the order of a few percent. Bt=160 the sign average 0.05

Sign

is so small and the projected time is so long that the simula-
tion was stopped when the error was about 30%. The averag %%
sign atB=160 was 4.71.2 X 10°8. The computational time S0 5000 10000
taken for these results are 3, 92, and 2000 h, respectively &°
For the =160, 6 CPUs were used with different random g 3x10°®
number seeds to collect the data. In Fig. 4 we plot the aver? el b L g M L b
age sign as a function ¢ and we see that all the values fall 0 ‘ r
nicely on an exponential form as expected.

Now the biggest question to answer is whether the multi-
level algorithm is useful. We would first like to point out that  FIG. 5. Monte Carlo sequence of fermion signs x40, 80,
it is still difficult to compute the average sign with reason-and 160 from the top.

0 10000 20000
Update
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FIG. 6. The first 2000 of the
positive (left) and negative signs
in logarithmic scale of theg
=160 run.

10—15

0 500 1000 1500 0 500 1000 1500 2000

to find configurations whose signs, when summed up, lead&nderson compensation theorem. We also compare our re-
to a very small number which can either be positive or negasult with the NRG curvesolid line) obtained forT,=0.08
tive but occasionally it also leads to numbers which are orwhich passes through most of the data points.
ders of magnitude larger but mostly positive. The large error Since our simulations are in continuous Euclidean time,
in the average sign is mainly due to these large fluctuations/e can simulate a largg without increasing the discretiza-
but always in the positive direction. In the next section wetion error. In the limit of largeJ, the Anderson model con-
will discuss why this observation is interesting. verges to the Kondo model. In the Kondo model, band elec-
In order to show that the new algorithm is indeed inter-trons and impurity spin interact with the couplidg From
esting, for the parameters chosen above we compute the athe Schrieffer-Wolff transformatiof23], the effective cou-
erage occupation numbers for the various energy levels. Ipling J of the Anderson Hamiltonian for a largl is
Fig. 7 we plot the differences between the average occupd@l'/7Up. In order to go towards the Kondo limit we fix
tion numbers in the interacting cases and the free cases at th I'=4 and study the case whelde=25e,=-12.5. The lo-
temperature@=25 and 50. The open circles give the resultscal and impurity susceptibilities are plotted in Fig. 8. We see
in the cases wher&=0 in which case one can obtain the that now these two are completely different. We attribute this
result also from the exact Green functions assuming the derntifference to the fact thdt/>D in which case the compen-
sity of energy levels is smootsolid line). Thus, we see that sation theorem is no longer valid.
our algorithm can indeed produce results in good agreement. We have also computed the various observables discussed
For the case oU=2, the Kondo temperature for this system in this article for the Hamiltonian that contains mesoscopic
is roughly T,=0.09 as seen from the numerical renormaliza-fluctuations. We find that typically we can use our new
tion method[2,15]. In this case83=25 and 50 correspond to method to compute quantities for temperatures as low as
a temperature of abody/2 andT,/4. We see that indeed the ~T,/4. Using the multilevel technique we can also go down
Kondo resonance appears as expected. to temperatures of abodt~ T,/10.
Finally, we focus on the local and impurity susceptibili-
ties. To check the Clogston-Anderson compensation theo-
rem, a larger bandwidth2=20 is chosen wittN=2000. For VI. CONCLUSION

U=2(€=—1), xio and i, are shown in Fig. 8. For the local —, yuo o ticle we have investigated a new algorithm for a

susceptibility, with the mu'lti]t.avel method we were able to model involving a band of fermions interacting with a single
calculate the local susceptibility at a much lower tempera’tun?mpurity in the occupation number basis in “momentum”
than the impurity susceptibility. We find thgt, and x;,, are

in reasonable agreement as expected from the Clogston-

0.5
0.04
04 < im
U=0(continuum) . i.
s o
0.02 - ° U=0 35 TEga,_ : .03 NRG(T,=0.08)
o U=2 II e e |;<
SX 0 II 02+
.otc‘s.x.x‘:“ III 04
-0.02 | IIII — L
0.0 ! !
-0.04 : ' : : : 107 10° 10’
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 06
0.08 U=0(continuum) 3 0.5
0.04 | °B:g T, 1 0.4
Sy o [l
S 0.00 oo ! = 33T 5383 = 0.3
-0.04 | IHI . o1
-0.08 1 1 1 1 1 00
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
&/led

FIG. 7. Occupation numbers minus the free Fermi function at FIG. 8. Local and impurity susceptibilities fdd=2 (top) and
B=25 (top) and 50(bottom) for N=750,D=5, e4=-1, and'=0.5. U=25 (bottom with U/T"=4 fixed.
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space. We use the efficient directed loop algorithm to updathalf of the sign problem has been solved. If this is true then
the configurations and absorb the sign into observables. Wge think this is an exciting step in the solution to the full
find that the sign problem is mild down to temperatures ofsign problem based on the recent progress in solving certain
orderT,/4. Furthermore, the new approach allows us to exsign problems using the meron cluster algoritf&h There it
plore a new multilevel algorithm to compute average signsyas possible to rewrite the partition function in terms of
efficiently. We were able to compute signs of the order of¢onfigurations where the Boltzmann weight was either zero
10°° with moderate effort. The new approach also allows usyr positive. Thus, all negative signs were eliminated. The
to calcul_at_e certain quantities like the impurity susceptlblhtysecond step was algorithmic when all zero configurations
more efficiently than conventional Monte Carlo methods. Fi-yere eliminated in an accept reject step. An intriguing ques-
nally, our algorithm can easily be extended to several impugi,, js \whether something similar can be achieved in the

rities. 4 .
The average of the sign over configurations that are gerPresent case. We leave this question for future research.

erated in the multilevel algorithm fluctuates between small

values wh_ich can be both posit.ive and negative and Iargg ACKNOWLEDGMENTS
values which are orders of magnitude larger but always posi-
tive. The effort for this grows ag2Ny*/2 where g=2K"1, The authors thank U.J. Wiese and R.K. Kaul for useful

Although this does not solve the sign problem completelydiscussions. This work was supported in part by NSF Grant
since the positive numbers can still fluctuate a lot, perhapslo. (DMR-0103003.
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